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ABSTRACT

Three types of turbulence models which account for rotational effects in noniner-

tial frames of reference are evaluated for the case of incompressible, fully developed

rotating turbulent channel flow. The different, types of models are a Coriolis-modified

eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress

model which accounts for dissipation rate anisotropies. A direct, numerical simu-

lation of a rotating channel flow is used for the turbulent, model validation. This

simulation differs from previous studies in that significantly higher rotation numbers

are investigated. Flows at. these higher rotation numbers are characterized by a re-

laminarization on the cyclonic or suction side of the channel, and a linear velocity

profile on the anticyclonic or pressure side of the channel. The predictive performance

of the three types of models are examined in detail, and formulation deficiencies are

identified which cause poor predictive performance for some of the models. Criteria

are identified which allow for accurate prediction of such flows by algebraic stress

models and their corresponding Reynolds stress formulations.

I INTRODUCTION

Turbulent flows in noninertial reference flames are of considerable interest in a

variety of industrial applications. However, the success of a comi)utational analysis

of such flow phenomena relies heavily on the choice of turbulence model. It is well-

known that, without some modifications, conventional isotropic eddy-viscosity models

fail to predict, the effect, of noninertial forces on turbulence, whereas second-moment

closures, for example, can account for noninertial effects in a systematic way.

An explicit algebraic stress model (EASM) has been developed by Gatski and

Speziale (1993) which is a nonlinear extension to an isotropic eddy-viscosity two-

equation model. This EASM allows for the inclusion of stress anisotropies and rota-

tion rate effects and is developed on a rigorous mathematical basis, while still keeping

the associated computational cost comparable to that of two-equation models. Pre-

vious results have shown that this approach is a viable approximation to the full

Reynolds stress closure for a variety of engineering flows. An extension to this EASM

which account.s for dissipation rate anisotropies in a systematic way and is applicable

to wall-bounded flows, has been recently evaluated (Xu and Speziale 1996), and is



basedon an analysisof the exact transport equation for the dissipation rate tensor
(Spezialeand Gatski 1997). This compositealgebraicstress model (CASM) is ex-
tended hereto include noninertial effectsin the determination of both the stressand
dissipation rate anisotropies. The compositemodel differs from previously proposed
algebraicstressmodels in two ways: dissipation rate anisotropiesare accountedfor
in the constitutive relation and the coefficient of the production term in the trans-
port equation for the scalardissipation rate is now sensitizedto the mean strain and
rotation rate tensors.

The objective of this study is to systematically,explore the predictive capabilities
of explicit algebraic stressmodelsin generaland, in particular, the compositemodel
for the caseof a fully developedturbulent channelflowwith strongspanwiserotation.
This effort, is an extensionof previouswork in that (1) the recentDNS obtained by'
La.mballaiset al. (1996) hasyielded new data for rotation numbersthat are higher
than those for tile previousDNSstudy of Kristoffersenand Andersson(1993)(aswell
as the previousexperimental study of ,Johnstonet ai.1972)and (2) the equationsare
integrated up to the wall, whereasmost.of the previouscomputationswerelimited to
wall-function boundary conditions that. are not suitable for (strongly) rotating flows
where regionsof relaminarization can occur.

II TURBULENCE MODELS

The incompressible,fully developedrotating channelflow is a unidirectional flow
that results in simplified expressionsfor tile mean flow in the noninertial frame. In
this frame, the mean strain rate and rotation rate tensors

reduceto

(0,0) (05'i j= 5 0 0 , -_'i_= -5' 0 0 (2)
0 0 0 0 0 0

where 5 = 5,'(y) and y is the (listance measured from the (t)ottom) wall of the channel,

as shown in Figure 1.

The common feature between linear and nonlinear eddy viscosity models is both

require the solution of only two transport equations; an equation for the turbulent

kinetic energy li

-bT] (a)

and an equation for the turbulent dissipation rate e

0e '* _ -f2C* e2 +E+ u+
0--'7 = (elS_/_" S2h7 _ Gg/

(4)

where

l., = f.(',,lir, r = Ii/e, (5)
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Figure 1. Schematic of fully developed turbulent channel flow in a rotating frame

7' = -2Q25' is the turbulent production, r12 is the Reynolds shear stress, .f2 and f,

are wall damping functions, C, is a closure constant, and u is the kinematic viscosity.

Three turbulence models will be evaluated by using (3) through (5): a Coriolis-

modified eddy-viscosity model (EVM) proposed by Howard et al. (1980); , which is

based on the Launder and Sharma (1974) model; a realizable algebraic stress model

(ASM) (Shih et al. 1995); and a CASM that accounts for dissipation rate anisotropies

(Xu and Speziale 1996). These three models are distinct, in the way rotational effects

are incorporated into their formulations.

In the EVM, the noninertial modification is phenomenological and based on an

analogy with curved boundary layers. This type of modification was used recently bv

Pettersson et al. (1996) to rotating channel flow but at much lower rotation numbers.

The realizable ASM model of Shih et al. (1995) includes the effect of mean rotation

and has been tested on rotating homogeneous shear flow. The CASM is an algebraic

stress model which is directly extracted from a full Reynolds stress closure as well as

a transport equation for the tensor dissipation rate £ij. Thus, the model includes the

effects of all anisotropic dissipation rate in a algebraic stress framework.

The Coriolis-modified eddy-viscosity model uses the Boussinesq-lype relation for

the Reynolds stresses:

bij = -.]t, (_, I-. ij,

coupled with the relations to close (3) through (5):

D=-% , E= 2uut
-\O._]

.l_, =exp --:/.4 1 + 50 / J '

( e2 _2 + 1.5365'2r2 Q

.]'2 = 1 -- 0.3exp (--Re 2)

( 52Kb_j)
bi j = .ri j -- (6)

2K

ou) (r)

]&'2

Re, - (8)
11£

(10)



where C" = C, = 0.09, C_I = 1.44, C =, _2 1.92, a/,- = 1 cr_ = 1.3, and f_ is tile
rotation rate of the reference frame.

The Reynolds stress algebraic equation model (Shih et al. 1995) is given by

bij = - (:'. r,% + c2r:( S_k14:kj- I4J;kSki ) (11)

and

I¥ij =--"ij + %njif_rn,

where for this unidirectional shear case

Ft,, = (0,0,12) (12)

¢1 - 18C_2(ST) 2
c2= D=E=0

1 f_'1+ 12(,q'r) 2 -

13)

./2 = 1-exp - , y+_ yu,
//

C= 6.5+3_l,S'TI 1-3_+8

14)

-1

15)

ttT is the friction velocity, f. = 1.0, C, = 0.09, C';1 _- 1.44, C_2 = 1.92, _r1< = 1, and

c7, = 1.3.

The composite algebraic stress model that accounts for dissipation rate anisotropies

(Xu and Speziale 1996) is a extension of the EASM of Gatski and Speziale (1993) in

inertial frames. In the noninertial case, the process is complicated by the fact that

the system rotation enters differently into the anisotropic dissipation rate and the

algebraic stress relations.

First, noninertial effects are introduced into the explicit algebraic anisotropic dis-

sipation rate equation developed by Speziale and Gatski (1997) as

(l&i -

all(t

2,% [ ,._, ) ( 1 )]1,5 ('"*" T'_'ij -_ /_1T2 ('_'ikl'_'2T -- _I'ik'%kJ "_- 2'/_2T2 SikSkj -- _,_'kl,f_'kl(_ij ,

(16)

_h= TT_,_ +iT q' .... _=kTT]:_-TT q:' g'= c,_+- 1

17)

18)

19)

(20)

(i'_,_ = 5.8, and H3 = 0.6.

In the absence of rotation, this explicit algebraic anisotropic dissipation rate model

couhl be directly inserted into the explicit algebraic stress model and the resulting



compositeexplicit algebraicequation could be solved in conjunction with the tur-
bulent kinetic energy and the dissipation rate equations. In the noninertial frame
this direct substitution is not. possible,and the problem can be quickly identified
by examiningthe implicit relation for the algebraicstressmodel that is used as the
starting point for the tensorpolynomial expansionsassociatedwith the explicit rep-
resentations.The implicit relation that accountsfor dissipation rate anisotropiescan
be written as

9

q' 3bmnSmnDij) (bikWkj _-Vikbkj)bij nt- 03T (bikSkj + _-ikbkj -- -- O_2T --

and

I¥ij _ _.Jij -It Caj_mji[_rn,

= --OlWfiij -- gdij

(21)

_4 -- 4

<,_ - (22)
C4 - 2

01= -C2 3' 02=(2-C4)9--. 2

-a
23)

°3=(2-c3)2' g=[_+P-c-1]

C1 = 3.4 + 1.8T'/c, C2 = 0.36, C3 = 1.25, and C4 = 0.40. These constant closure

coefficients are obtained from the SSG pressure-strain correlation model (Speziale et

al. 1991). A comparison of (17) and (22) clearly shows that in general the rotation rate

tensors in the noninertial frame that are extracted from the algebraic dissipation rate

model and the algebraic stress model are not the same. This difference precludes a

simple combination of terms as suggested by (21) and shown to be possible in inertial

frames (Xu and Speziale 1996), where integrity bases were used to get a composite

explicit representation for the Reynolds stresses.

As an alternative to this approach, consider (21) rewritten as the matrix system

Ab = - (oars + gd) (24)

where

b = [bll, hi2,522] T,

i

1
fir (03 - o2R)

0

s = [0,s, 01_,
2 -v

55r (03 + 302R)
1

2-,q'r (03 -- 3o2R,)
3

fl

n=l-c_g

d = [dll, d12, d.22] T

0 ]5> (03 + 02R)

1

25)

26)

27)

The system in (24) can be inverted analytically to obtain explicit expressions for

the Reynolds stress anisotropies bij (and vii). Once again, these stress relations are

coupled with (3) and (4) for the turbulent kinetic energy and the turbulent dissipation

rate, with

D
: E = 0, f_ = -exp -_]

(2S)
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d12 3(14 16)= 1 + (1 + = - (29)

f, = 1.0, C, = 0.094, C_2 = 1.83, at; = 1, and a_ = 1.3. The additional (noncon-

stant) term in the expression for C_1 represents a production ratio of the turbulent

dissipation rate (d12S) and turbulent kinetic energy (b12S).

III RESULTS

The turbulence models presented in the last section are coupled with the stream-

wise momentum equation

0(7 2 0S 0r_2
- G + (30)

Ot Reb Oy Oy

where iTi = (l;, 0, 0); G is the (constant) effective pressure gradient, which includes
the centrifugal force term; and the bulk Reynolds number Reb = hUb/U, with {'_b

as the bulk velocity'. Equation (30), coupled with the transport equations for the

turt)ulent kinetic energy (3) and the turbulent dissipation rate (4), is integrated to

steady state by' a one-dimensional second-order finite-difference scheme. This simple

one-dimensional spatial problem allows for solutions with arbitrarily, high numerical

accuracy by using a sufficient number of points. Here, 200 points were typically used,

with highly' stretched meshes near the solid walls.

Because the different rotation regimes considered by the DNS (Lamballais et al.

1,(t96) were obtained at the same bulk Reynolds number, the pressure gradient, in the

numerical code was adjusted in order to have Reb = 2500 at. convergence. In the

following, results for three different rotation numbers, defined by

Ro = 21_lh/('b (3_)

are shown (Ro = O, Ro = 0.5, and Ro = 1.5). In the earlier DNS study of Kristof-
fersen and Andersson (1993), the maximum rotation number studied was 0.5. Thus,

the DNS data used in this study significantly increases the validation range for the
turbulence closure models.

The profiles of the mean velocity and turbulent kinetic energy' are shown in Figures

2 and 3. respectively. The turbulent kinetic energy, as well as the turbulent stresses

to be presented, are scaled by an average fi'iction velocity u_, which is the half-sum of

the friction velocities on both walls. The DNS results show the characteristic linear

region of slope 2f_ in the mean velocity, which leads to a mean absolute vorticity

2(,';' - _) that. is close to zero. These results also show that. the turbulent kinetic

energy is higher on the anticyclonic or pressure side (y = 0) than on the cyclonic

or suction side (y = 2), where relaminarization occurs. In Figure 2, for the mean

velocity the composite model is able to reproduce all features of the flow for the

three rotation numbers considered, including the linear portion of the profile and the

relaminarization on the cyclonic side, characterized by a parabolic velocity profile.

For the turbulent kinetic energy' shown in Figure 3, the asymmetry of the profile

and the higher turbulence intensity on the anticyclonic side of the channel are clearly

visible and are consistent with the DNS results. In the case for which Ro = 0, the
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peaksin turbulent kinetic energynear the wall arenot.well predicted becausein the
CASM no .f, damping function has been introduced.

The Coriolis-modified model of Howard et al. (1980) gives reasonable predictions

for the mean velocity at. the different, rotation numbers although not with the same

degree of accuracy as the CASM. The algebraic model of Shih et al. (1995) does

not correctly predict the mean velocity at these higher rotation numbers since it

fails to predict the linear profile on the anticyclonic side and the relaminarization

on the cyclonic side. For the turbulent kinetic energy, both the Howard and Shih

models misrepresent the behavior of the kinetic energy in the higher rotation rate

cases. At Ro = 0.5 and Ro = 1.5, the (':oriolis-modified EVM yields results that

effectively damp out the turbulent kinetic energy in the relaminarizing portion of the

flow, whereas the Shih algebraic stress model is somewhat insensitive to the effects

of rotation.
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Figure 9. Mean velocity profiles fox" (a) Ro = 0. (b) Ro = 0.5, and (c) Ro = 1.,5.

DNS (Lamballais et al. 1996); --, CASM; .... , ASM (Shih et al. 199,5); ---,

Coriolis-modified EVM.
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Figure 3. Turbulent kinetic energy profiles for" (a.) 17o = 0, (b) Ro = 0.5, and (c)

Ro = 1.:5. _ DNS (Lamballais et al. 1996); --, CASM; .... , ASM (Shih et al.

1995);---, Coriolis-modified EVM.

With the success of the CASM, further investigation of the flow dynamics is worth-

while by examining the total shear stress. At. steady state, (30) can be integrated



with respect to y and expressed in wall units as

- 7-++ = ,,T0 - 1+ , 01 j (a2)

where uT0 = uT ly=0, u,2 = uT ]u=2, and Re_- = hu,_/u. As this equation shows, the
total shear must vary linearly across the channel for all rotation rates. The partition

of the total shear stress between the turbulent r + and viscous 2S+/ReT stresses is

illustrated in Figure 4 for the composite model. The region of neutral stability, where

the velocity profile is linear, is characterized by a turbulent shear stress that varies

linearly, and a viscous shear stress that remains constant.

1.5

1.0

0.5

0.0

-0.5

-1.0

• {a) -]

1,5

1.0

0.5

0.0

-0.5

-1.0

41 •--. 0.5

0.0

-0.5

-I.0
0.0 0.4 0.8 1.2 1.6 2.0 0.0 0,4 0.8 1.2 1.6 2.0

y_ y&

1.5[ , , , , , , , , , , _ , , , _ , ,

'-1. ,

0.0 0.4 0.8 1.2 1.6 2.0

y_

Figure 4. Partition of the total shear between turbulent, and viscous shear stresses:

compntations by CASM for (a) Ro = 0, (b) Ro = 0.5, and (c) Ro = 1.5. --,

- 7-++ 2s+ / ---, - 7-+;- - -, zs'+/

In addition to the turbulent shear stress, the normal Reynolds stresses are signifi-

cantly affected by the rotation. Figure 5 shows the attenuation of the normal stress

components on the relaminarized side of the channel at both nonzero rotation num-

bers. On the turbulent, side, the streamwise component 7-11 iS attenuated relative to

the /10 = 0 case, and both the 7-22 and r3:_ components are enhanced relative to the

Ro = 0 case. The most significant effect, is on the 7-22component, but even at the high

rotation case the 7-:_:_component also exceeds the 7-11 component on the anticyclonic

side. This result is consistent with the DNS results and can be explained t>v the fact

that the CASM is derived from a Reynolds stress model and will, therefore, inherit

the right sensitivity of the production terms for the individual normal stresses to the

rotation. On the other hand, the stress a.nisotropies predicted by the model of Shih
f2

et al. (19.95) in ( 1 1 ) for unidirectional shear, where hll = -/>22 = 2c2(Sr)2( 1 - ;_ ) and

b:_:_= O, show that this coupling of the bll and b22 forces the incorrect prediction of

isotropic turbulence when 9/= ,q, and which would preclude the correct prediction of

the normal stresses as displayed in Figure 5.

Both the l>resence of the linear velocity profile and the relaminarization process
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Figure 5. Turbulent normal stress profiles for (a) Ro = 0. (b) Ro = 0.5, and (c)

Ro = 1.5. DNS (Lamballais et al. 1996) data: Z3---A, "I'll; [3-------I-q T22 ; O-------O, 7"33.

CASM:--, rll .... , r22;---, ra3.

can be explained. The CASM is derivable from the Reynolds stress model

g

-- 027- (bihWkj - Wikbkj) + Olr,5'ij + 9dij I

(:3:3)

where T_ij (and T_/_-= 7Djj/2) represent the effects of turbulent and viscous diffusion:

oa, 02, o,3, and 9 are given in (23). The implicit form of the algebraic stress model

is obtained by setting the left side of (aa) to zero and using the appropriate closure

model for the dissipation rate anisotropies (such as the one shown in (16), which is

used here). Note that the equilibrium h/t)othesis that underlies the algebraic stress

models is exactly satisfied here (i-ij = K = 0), and the only approximation that is

made is Dij ",_z_ .

An examination of (3.3) shows that the anisotropy component b12 must satisfy the

following equation:

O = bl.2[l - _o_(,5'r)2 + 4o.'_(,q'7-)2_ 2] + 61,_'T (.34)

where 7_ is given in (27), and

]6_ = o_ + g k'bT- + o3(dll + d22) - o_27P_(dll - d22) (.35)

As could be expected, this expression for b12 has the same functional form as the
EASM:

-1

bv2=-o,C;ST, C;= 1-._ _
(.36)

Thus, in both the composite model and the EASM the production-to-dissipation rate

ratio is always given by
¢',

=- -4b12,5'r = 4&lC_(,5;r)2 (137)
c7



showing that p is a function of both QJ_ and St. By, interchanging this dependency,
tile behavior o_ f_/,5' as a function of Land Sr,

- 61 -I- _-a5 4(,q,r) 2
(as)

can be studied. For comparative purposes, a corresponding f_/S relationship can also
be obtained from all expression equivalent to (37) for the Shih et al. (1995) model;

f_ 1
m

,q" 3--- - 1-t- ,5'r 3,5'r (39)

Figure 6 shows the evolution of Q/S across the channel for the different rotation
regimes and the three models considered. For the two rotating cases, several features

are apparent. Starting fi'om values near zero on the anticyclonic side (because ,5'

is high near the wall), the DNS results clearly show a plateau at ft/S = 1, then

quickly grow and change sign at the location of the maximum velocity (,5' = 0). On

tile cyclonic side, Q/S(< 0) then approaches zero with a y-1 behavior (,q' _,, -y

in the relaminarized region). The figure shows that. the CASM closely follows the

DNS results and accurately predicts the location Of maximum velocity. With (38),
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Figure 6. Scaled rotation rate variation across channel for (a) Ro = 0, (b) Ro = 0.5,

and (c) /l?o : 1.5. z2x---/_ DNS (Lamballais et al. 1996); --, (:ASM; .... , ASM

(Shih et al. 1.q.qS):---. ('.oriolis-modified EVM.

we can explain why the CASM model is able to predict such features, and we shall

see that the reason is closely related to the expression for C,, which must show the

correct dependency on Q/,5' and ,5>. By their nature, the ('ASM, and more gel]erally,

all of the algebraic stress models that are consistently, derived from Reynolds stress
*

models inherit the correct behavior for C,, while algebraic stress models that provide

a. (_.,, expression based solely on constraints such as realizability, calibrations, and

phenomenological arguments ma.q not have the correct, behavior and will fail to predict

tile neutral stability region and the relaminarized zone that is observed in the rotating
channel.

For larger values of ,5'r (i.e., > 3), the last term under the root. in (38) is negligible

compared with the other terms, and Q/,5' becomes a. function of E onh'. and takes
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valueson the two limit branchesthat correspondto the sign of S(= +ISI). Now, it

is also easy to verify' that these two values of D/S rapidly become independent of an

increasing k and asymptote to either (gt/,_q) + (S > 0) or (_t/S)- (5' < 0) Equation
_ •

(38), therefore, shows that for a wide range of values of Sr and E the value of f_/S

becomes effectively independent of these parameters, and takes values close to (_/S)+.

These two limiting values only' depend on the values of the model coefficients C_i's,

and have the following values for the SSG pressure-strain model: (Ft/5) + = 0.992

and (f_/,_q)- = -0.103. In the channel away from the walls, the diffusion of K may

be expected to be small, and we should have E _ 1 and b'r>3. In this case. the

scaled rotation rate will have values on tile limit branches that will be close to the
,+

limit values (D/,5) .

Figure 7 illustrates this phenomenon by showing the evolution of the scaled rotation

rate correlated with the variation of E across the channel. In Figure 7(a), the two
c
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Figure 7. Scaled rotation rate variation versus E_ in the channel for (a) CASM, (b)

ASM (Shih et al..1995), and (c) Coriolis-nmdified-EVM.--, Ro = .5; ..... Ro = 1.5:

---, limit branches (shown for (a) only).

limit branches given by (38) with values of ,5'r _> 3 are represented by dashed lines.

At r_r_= 0 and .q = 0, the curves that. correspond to the CASM sinmlation at. the

two rotation regimes first, move in a. region where (ft/,5')- < Q/_q' < (ft/,5') + because

the values of Sr that. are given by the model are also very small. However, as r

rapidly increases with movement away from the near-wall region, ,5'r increases also,

and the points collapse on the (positive) limit branch. Until very near the wall at.

.q = '2, the value of _q'r stays a.t. values sufficiently high to force the points to stay

on the limit branches. After having attained values close to (Q/£')+ = 0.992 for the

major portion of the channel on the anticyclonic side, the maximum velocity point, is

reached, r becomes very small (as ,5' ---+0) and the negative limit branch is followed

after the maximum velocity. For most of the values f_/,q' < (f_/£')-, the corresponding

value of r on the negative branch is very small, and according to (3), we can expect

OK�Of < 0, which leads to relaminariza.tion in this region.

This explanation for the occurrence of the linear profile and the relaminarization

process is also valid for other Reynolds stress models {i.e. other pressure-strain cor-

relation models). For example, the L1R1R model (Launder et al. 197,5) yields limiting

values for f_/_q' of (Q/£')+ = 0.644 and (f_/,9)- = -0.131 for the anticyclonic and
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cyclonic sides,respectively. However,one would expect that the slope of the linear

velocity profile, when compared to DNS, would not be correct. Note also that these

results are independent of the particular model for c that is used, because the effect

enters only through Sr and r'

The same analysis can be carried out on the Shih et a]. (1995) model by' using (39).

With this model, the evolution of ,5> always has an effect on FZ/S, and no limiting

behavior occurs. Therefore, the system is then not forced to reach the asymptote

f_/£' _ 1, which precludes attainment of a linear velocity profile on the anticyclonic

side (Figure 7(b)). From E = 0 at y = 0, E quickly increases and the resulting

curve is obtained from the balance of the model equations and (39). The fact that

this model cannot reproduce the correct features for the rotating channel at high

rotation numbers can be attributed to the lack of a mechanism in (_ to render f_/,5'

independent of £'r and ;'

Finally, for the Coriolis-modified EVM, relation (37) cannot be used to find a

relation between f_/S, E and St. Instead, (4) can be examined at. steady state in

regions away from the walls where the damping functions and diffusive terms can

be neglected. The dissipation rate equation then yields the simple relation that the

production-to-dissipation rate ratio is ('_/C_1 and

_ l[l_t_i 1 4 ( _ )]S- '2 1.536(Sr)2 C21- ('e2 (40)

For sufticientlv, high values of ,q'r, the dependency_, . on ?E_is totally_ removed, and f_/,5'
takes a value of 0 or 1. Other values of f_/,S can only be reached when E _anishes,

as shown in Figure 7(c). Thus, the model then yields an abrupt and total damping

of lhe turbulence. (See Figure 3.)

IV CONCLUSIONS

This study has shown that algebraic stress models consistently derived from Rey-

nolds stress models inherit the correct dependency to rotation, and noninertial effects

are automatically accounted for in a rigorous way. On the other hand, algebraic stress

models that try to generalize the eddy-viscosity hypothesis in a phenomenological way

are not necessarily directly extendible to non-inertial frames. As these results have

shown, the nonlinear eddy-viscosity function C,: mnst be constructed with the correct

del)endency on ST and _/,q'. This study also demonstrated that. the key features (,f

the rotating channel flow were controlled by mechanisms only remotely linked to

the dissipation rate equation, which would mean that phenomenological models that

attempt to account for noninertial effects solely through modification of the source

t.erms in the dissipation rate equation may not be properly accounting for essential

flow physics.
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